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The four broad approaches that have been suggested heretofore to eliminate the 
initial singularity from cosmology are briefly reviewed. None is satisfactory, 
basically because one does not know enough about the microphysics involved 
in the process. Thermodynamics has often been used in such dilemmas, and it 
is proposed to answer the question of whether there was a Friedmann-like 
singularity in the universe by exploiting the bound on specific entropy that has 
been established for finite system. It is made applicable to the universe by 
considering only a causally connected spacelike region within the particle horizon 
of a given observer. It is found that the specific entropy of radiation in such a 
region can exceed the bound if the observer is too early in the universe. Faith 
in the bound leads to the conclusion that the Friedmann models cannot be 
extrapolated back to nearer than a few Planck-Wheeler times from the singularity. 
The Friedmann initial singularity thus appears to be thermodynamically unaccep- 
table. 

1. I N T R O D U C T I O N  

With the d iscovery  o f  the expans ion  o f  the universe  (Hubble ,  1929) 

F r i e d m a n n ' s  cosmolog ica l  models  (F r i edmann ,  1922, 1924) were shown to 

be the right f r amework  for  descr ip t ion  o f  the recent  universe.  Can  they be 

ex t rapo la ted  to the very beginnings  o f  the universe?  The cosmic  mic rowave  

backg round  certifies that  the mode ls  are good  back  to redshif t  z = 103. The 

success o f  the s tandard  F r i e d m a n n  mode l  in quant i ta t ively  expla in ing  the 

cosmolog ica l  he l ium a b u n d a n c e  pushes  the region o f  val idi ty back to maybe  

z = 109. The  last decade  has wi tnessed great  strides in pushing  the earliest  

redshif t  to redshif t  1032--the Planck era. 

At the end of  this cosmic  tunnel  looms the initial cosmologica l  singular-  

ity. It is the consensus  in gravi ta t ional  theory  and cosmology  that  accept ing 

the s ingular i ty  as a real fea ture  o f  the universe  brings with it thorny  issues: 
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lack of predictability, etc. Most cosmologists and gravity theorists would 
argue that the singularity will not show up in a correct treatment of the 
expansion. In what follows I would like to briefly review, in qualitative 
terms and with no pretense to completeness, the four roads that have been 
tried in the past to do away with the singularity. It will become clear that 
no road guarantees excision of the singularity. Then I would like to describe 
a little argument that suggests that the singularity is thermodynamically 
forbidden. This is based on the bound on specific entropy whose existence 
I suggested a few years ago. If one takes the argument seriously, one learns 
that whatever the mechanism responsible, the universe is loath to begin 
from a singularity. 

2. THE SINGULARITY 

The cosmological singularity is a common feature of a large class of 
cosmological models. In the Friedmann models it describes a state of infinite 
temperature, density, and arbitrarily large curvature of spacetime at the 
beginning of  the expansion. Similar singularities occur in other cosmological 
models. For example, in most models based on the inflationary paradigm 
(Guth, 1981; Linde 1982) the universe begins in a Friedmannian phase 
before embarking on the de Sitter inflationary phase. The ubiquity of  the 
initial singularity is, to some extent, guaranteed by the "singularity 
theorems" (Hawking, 1965, 1966; Geroch, 1966; Penrose and Hawking, 
1970; Hawking and Ellis, 1973). They show that any cosmological model 
based on Einstein's equations and satisfying several loose conditions must 
have a singularity. One of  these conditions is the strong energy condition 

( T ~ - 1/  2 g ~ T ) u ~ u ~  > 0 (1) 

on the stress energy tensor T ~ of matter and its trace T; it is supposed to 
hold for every timelike vector u~,. Although the singularity theorems do not 
specify the nature of the singularity, there is much evidence that in models 
closely resembling Friedmann's in the geometry of space and in the contents 
of  the universe, an infinite density and temperature singularity is present. 

3. EXOTIC PROPERTIES OF MATI'ER 

The singularity theorems are often called upon as evidence that quan- 
tum cosmology is needed to resolve the singularity dilemma. In fact, nothing 
so drastic is necessary. For example, it was appreciated early by several 
people that matter under the extreme physical conditions holding sway at 
early cosmological times may, already at the classical level, violate the 
strong energy condition, and thus help to sidestep the singularity theorems. 
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In this spirit cosmological models have been exhibited in which the initial 
singularity is absent thanks to the matter in the universe exhibiting at high 
densities either large viscosity (Murphy, 1973) or negative pressure (Rosen, 
1974). Today most would agree that postulating special properties of matter 
to exorcise the singularity is an approach with limited credibility attaching 
to it. However, the fundamental point can be made in a more basic way. 

Interactions between particles in the early universe must be important. 
The nuclear interactions may be regarded as mediated by the Yukawa field, 
a massive scalar field. Such a field can trivially violate the energy condition 
(1) already at the level of  classical physics (work it out !). Thus, one suspects 
that the condition will be violated at early times when the matter is at 
nuclear or higher density (z > 1014). One might try to model the relevant 
universe by including a homogeneous Yukawa field in addition to the usual 
matter and radiation. 

Since it is mathematically complex to solve the Friedmann equations 
in the presence of a massive scalar field, I once looked (Bekenstein, 1975) 
for exact cosmological solutions to Einstein's equations representing uni- 
verses filled with pressureless matter, radiation, and a homogeneous confor- 
mal scalar field minimally coupled to the matter. The conformal scalar field 
also violates condition (1), so it can be argued that this is a suggestive 
model for the real situation. I found models which bounce away from the 
singularity for all three space topologies. This all depends on the relation 
between the three parameters describing the strength of the coupling, and 
the amounts of  matter and radiation present, and three integration constants. 
Particularly aesthetic models can be had for the positive-curvature universe; 
in these the conformal field's sole source is the matter in the model (and 
not an initial condition), in agreement with the motivating picture of  this 
approach. 

Models in the same spirit, and taking account of  the strong interaction 
in more realistic fashion, are also known (Dehnen and Honl, 1975). All the 
above examples show that the singularity may be removable at the level of 
classical physics by the natural properties of the matter contained in the 
universe. It must, however, be emphasized that not every model of this kind 
is nonsingular. 

4. DEPARTURES FROM CLASSICAL GENERAL RELATIVITY 

The second road toward excising the cosmological singularity seeks to 
modify general relativity (GR) itself. Much effort has gone into generalizing 
the Hilbert action of GR to include quadratic terms in the curvature 
(Ginzburg, 1971; Nariai and Tomita, 1971). Nariai and Tomita have 
exhibited explicit nonsingular models based on such a gravitational theory. 
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It is probably fair to say that most theorists would reject such a modification 
of  Einstein's equations if it is ad hoc and made for the sole purpose of 
eliminating the singularity. Of course, we now know that terms quadratic 
in the curvature can appear in the action in the wake of regularization of 
quantum field divergences. However, that is another story to be mentioned 
a bit later. The point I want to make here is that some modifications of  GR 
can come from a separate and more reasonable motivation. 

Let me illustrate by briefly describing the variable mass theory (VMT), 
a gravitational theory I proposed (Bekenstein, 1977) to assess the extent to 
which the predictions of GR are dictated by the strong equivalence principle. 
Among other things, this principle would require the rest masses of various 
particles to be constant in Planck-Wheeler units, i.e., the ratio of  a rest 
mass to ( h c / G )  1/2 must be a spacetime constant. VMT dispenses with this 
particular assumption, and allows masses to have dynamics of their own. 
Under very general conditions it can be shown that rest masses must vary 
as a real power of a scalar field which may have a coupling to curvature, 
and whose source is the matter's T. (In this sense VMT is the ultimate 
extension of  Brans and Dicke's theory; the general scalar tensor theories 
drift away from the original intent). Despite its more liberal axioms and 
different structure, VMT has the peculiarity of  mimicking many of the 
predictions of GR for the solar system tests of relativity (Bekenstein, 1977), 
and for neutron stars and black holes (Bekenstein and Meisels, 1978). And, 
unlike Brans-Dicke theory, it does this without the benefit of a parameter 
which must be adjusted to have large values. 

Insofar as observable predictions are concerned, VMT and GR are 
pretty much indistinguishable experimentally with present technology. 
Indeed, the paper which described the similarity (Bekenstein and Meisels, 
1978) bore the title "General  relativity without general relativity." Anyway, 
unlike the standard Friedmann models, many VMT cosmological models 
which tend to behave like the Friedmann models at late epochs (Bekenstein 
and Meisels, 1978) are nonsingular (Bekenstein and Meisels, 1980). Thus, 
one has the best of possible worlds: GR behavior almost across the board, 
with the option of a nonsingular universe. Again, I have to emphasize that 
there are also singular VMT models. The singularity is not compulsory, but 
neither is its elimination. 

5. QUANTUM FIELD EFFECTS 

Most relativists do not like a classical modification of GR, even one 
as conservative as VMT. The majority view has for tong sought to put the 
blame for the appearance of the singularity on the unjudicious application 
of classical physics in the very early stages of the universe. It seems to have 
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been recognized early in the 1970s that quantum field-theoretic effects can 
violate the strong energy condition. (For comparison recall that effects like 
these violate the related weak energy condition and thus allow a black hole 
to circumvent the Hawking area theorem and emit Hawking radiation). 
With the fall of  the condition, the singularity theorems lose their force and 
this opens a third road toward elimination of  the initial singularity. 

Thus, it was shown (Fulling and Parker, 1973) that if the universe 
contains a massive scalar field prepared in a coherent quantum state, the 
singularity is avoidable by a cosmic bounce. Of course, one is left with the 
problem of what mechanism will favor such quantum states. Recall also 
that the massive scalar field already violates the energy condition classically, 
so presumably a bounce could also be obtained with no appeal to quantum 
effects. The bounce solution to the singularity problem is also implemented 
in several models in which the trace anomaly of  quantum scalar fields plays 
a crucial role (Fischetti et  al., 1979; Anderson, 1983). The universe can 
bounce because the regularized stress-energy tensor of the fields does not 
respect the strong energy condition. However, not every possible model 
obtained by this strategy is nonsingular. 

It is possible to escape the singularity with no recourse to a cosmic 
bounce. In one charming model universe (Starobinsky, 1980), the expansion 
is driven by vacuum polarization of various conformal fields which are all 
in the vacuum state. In its initial nonsingular state this universe is thus 
empty. It expands in accordance with de Sitter's solution, i.e., undergoes 
inflation, before embarking on a standard Friedmann-like expansion when 
particles finally appear in it. The de Sitter phase is nonsingular and so the 
Starobinsky model avoids the singularity. Another model universe (Vilenkin, 
1983) materializes out of  "nothing" with already finite curvature by virtue 
of  instanton effects of  the Higgs field it contains. It thus avoids the singular- 
ity. This model is still not quantum cosmology in the literal sense, for the 
gravitational field is treated as classical; for a quantum gravity version see 
Vilenkin (1989). All the above investigations and those of  several other 
researchers show that, in the presence of  quantum field effects, the cosmo- 
logical singularity is no longer compulsory. But, as we have seen, the generic 
model with quantum fields is not guaranteed to be nonsingular. 

6. QUANTUM C O S M O L O G Y  

The fourth road toward exorcising the cosmological singularity is 
quantum gravity. It is no exageration to say that most gravity theorists 
expect this to be the final answer to the singularity problem. And yet no 
finished theory of quantum gravity exists. At the present stage various 
elements and tools of this theory have taken shape without it being clear 
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how they will all fit together into a coherent apparatus. Quantum gravity 
in its final form should deal with the probability amplitudes (wavefunctions) 
for this or that spatial geometry to appear. Given the appearance of the 
Planck-Wheeler (PW) scale in the theory, it is expected that spacetimes in 
which the curvature can become larger than the inverse squared PW length, 
or can vary rapidly on that scale, should become highly improbable. This 
would be the quantum gravity version of a prohibition on singularities such 
as the Friedmann singularity. 

Does the nascent quantum gravity framework paint a picture of the 
eradication of the cosmological singularity in consonance with the expecta- 
tions? Over the last two decades there have been several approaches to 
quantum gravity, and numerous attempts (too many to review here if only 
in a qualitative way) to build nonsingular cosmological models in this way. 
Here I mention only the approach based on "functional integral" quantiz- 
ation pioneered by Hawking and his school (Hawking, 1979; Hawking and 
Halliwetl, 1985; Hartle, 1983). Cosmological models built on this basis 
sometimes give the hoped-for vanishing of the probability amplitude at a 
curvature singularity. But far from being generic, this result is contingent 
on a particular choice of factor ordering in the Wheeler-DeWitt equation, 
the quantum gravity analog of the Schr6dinger equation. There are possible 
(even reasonable) factor orderings for which the amplitude at a singular 
surface is nonvanishing (Hartle, 1983). 

A simpler version of the functional quantization approach that quant- 
izes only the conformal factor in the metric (Narlikar and Padmanabhan, 
1986) also leads to vanishing probability amplitude for a singularity for 
"most" models, but one is left to wonder whether this is not an artifact of 
the restriction in the number of dynamical degrees of freedom. Thus, in 
common with the other roads, the quantum gravity road has not yet led to 
an unambiguous destination. 

7. THE BOUND ON ENTROPY 

The situation is thus a frustrating one. It would be nice to know what 
the verdict on the singularity is without waiting many more years for the 
full-blown formalism of quantum gravity to crystallize. Fortunately, there 
is perhaps a way! Historically, whenever consideration of detailed physical 
mechanisms has failed to render verdict on the reality of some disputed 
phenomenon, physicists have often resorted to thermodynamics to settle 
matters. As is well known, thermodynamics gives relations between macro- 
scopic quantities whose validity is independent of the form of the microphys- 
ics on which they ultimately depend. Thus, the temptation is great to bring 
thermodynamics to bear on the question of the cosmological singularity. 



Cosmological Singularity and Thermodynamics 973 

Of course, not every physical issue can be handled by thermodynamics. 
Might not that be the case in our problem? Indeed, the view has usually 
been that thermodynamics cannot be invoked to cast doubt on the reality 
of the singularity because there is nothing contradictory about employing 
thermodynamics to describe the contents of a cosmological model which 
extrapolates to a singularity in the past. This view is already present in 
Tolman's classic treatise (Tolman, 1934), and is futher elaborated in modern 
texts (Weinberg, 1972). However, I believe that it oversimplifies the issue, 
and that thermodynamics actually supports the view that there was never 
a singular event in the universe's history. Missing in the usual thermody- 
namic treatments of the expanding universe is a supplement to the second 
law of thermodynamics of  rather recent vintage. 

The second law states that the entropy of a closed system cannot 
decrease, and indeed tends to a maximum. In its traditional form the law 
is silent about the numerical value of the maximum. I have suggested 
(Bekenstein, 1981a) that if a complete physical system can be enclosed in 
a sphere of radius R, then 2~rR/fic sets an upper bound on the ratio of the 
maximum entropy S that the system may contain to its total energy E (I 
regard entropy as dimensionless; hence here Boltzmann's k = 1). This bound 
supplements the second law in that it constrains the maximum value of  the 
entropy, albeit not very onerously. Indeed, for "household"  thermodynamic 
systems the bound is true almost trivially, and is unenlightening. However, 
for systems in which quantum discreteness asserts itself, the bound can 
make nontrivial predictions. 

The existence of this bound was originally suggested by application of 
the generalized second law of thermodynamics (Bekenstein, 1973; Hawking 
1975) to gedanken experiments involving thermodynamic systems with a 
black hole (Bekenstein, 1981a). It was later pointed out (Unruh and Wald, 
1982) that such arguments cannot constitute a general proof  of the bound. 
No such proof  was forthcoming in the early days of the subject; for years 
one's faith in the bound was based on a variety of  examples supporting it, 
particularly for systems composed of free quantum fields (Bekenstein, 1983, 
1984), or many quantum mechanical particles (Qadir, 1983; Kahn and 
Qadir, 1984). Successes of  the bound in systems with strong gravitational 
fields (Sorkin et al., 1981), with quartic field interaction (Bekenstein and 
Guendelman, 1987), and superstring systems (Bowick et al., 1986) were 
also known. Recently a deductive proof of the bound for free quantum 
fields enclosed in an arbitrary cavity has been given (Schiffer and Bekenstein, 
1988). That proof  may be extendable to a fairly broad class of interacting 
fields (Schiffer, 1988). 

In its early days the bound was used to predict a limit on the number 
of  generations of quarks (Bekenstein, 1982), and a bound on the rate of 
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communication possible within a given energy budget through a channel 
(Bekenstein, 1981b, 1982). Today the evidence from cosmology indicates 
that the number  of  generations is probably limited to four, while detailed 
work (Bekenstein, 1988) has confirmed a facet of the predicted bound on 
communicat ion rate. In view of these successes of  the bound, and of the 
newer proofs of  its validity, it seems timely to apply the bound to the issue 
of the cosmological singularity. As will be clear below, the bound predicts 
that there was no singularity of  the Friedmann type. 

To show this I shall work with a radiation-dominated Friedmann model, 
and show that a contradiction with the bound is imminent if the model is 
extrapolated too far back in time. There is even a suggestion that quantum 
gravity is the physics that prevents the singularity. However, nothing in the 
way of a minimal scale below which spacetime cannot be regarded as smooth 
will be assumed in the argument. Indeed, in view of the point of  view 
introduced by superstring theory, it is better not to rely too heavily on this 
assumption. 

First, some problems must be overcome. The bound is meant to apply 
to a system of finite size; the universe, for all we know, may be infinite. 
This problem would be resolved by applying the bound to an arbitrary finite 
region of the universe, but of course such region could not, in general, be 
regarded as a complete system, as required by the bound (Bekenstein, 
1981a). In addition, the bound has been tested mostly for static systems, 
but the universe expands. The energy of the system is a key ingredient of  
the bound, but the energy of the full universe may not be a meaningful 
concept. Finally, apart from one example (Sorkin e t  al . ,  1981), very little 
is known about the validity of  the bound in the presence of spacetime 
curvature. 

8. ROLE OF THE PARTICLE H O R I Z O N  

I propose to sidestep some of these problems by applying the entropy 
bound, not to a comoving region or to the whole universe, but to a region 
inside the particle horizon of a definite observer. As is well known (Narlikar 
and Padmanabhan,  1986), all observers in a Friedmann model have their 
vision limited by the finiteness of the speed of light, and by the fact that 
no propagation of information preceded the cosmological singularity. 

To make this precise, consider the metric in a radiation-dominated 
Friedmann model at early times: 

d s  2 = - c 2 d t  2 + b 2 t [  d r  2 + r2(d02 + sin 2 0 d~2)] (2) 

Here b is a constant with no direct physical significance. The singularity is 
at t = 0 for all space points. For a given observer O situated at r = 0 at 
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t = to, the backward  light cone is del ineated by integrating the condi t ion 
ds 2= O. It is the surface 

t = (~oo- br/2c) 2 (3) 

labeled H in Figure 1. Along this surface t decreases with increasing r, 
eventually vanishing at r = 2C~o/b. This is how far f rom r = 0 a signal may 
start at t = 0 and hope  to reach O at t = to. Obviously,  O cannot ,  at t ime 
to, see events that  occurred  at r>2c,~o/b.  The hypersurface (3) which 
encloses the part  of  the universe visible to O is therefore called the particle 
horizon of  O. 

Ordinar i ly  the ent ropy b o u n d  is appl ied to a system enclosed by some 
material  boundary .  Here I shall instead apply  it to the material  content  
(radiat ion in our  specific example)  o f  the section o f  some spacelike hypersur-  
face which lies entirely within the particle hor izon of  O, e.g., hypersurfaces  
X and X' in Figure 1. Such a spacelike region has been influenced only by 
that  part  o f  the early universe which has also affected O. Hence,  with 
reference to our  part icular  observer  O, it is the next best thing to a closed 
system. In this way we dispose o f  two of  our  problems:  we have a "c losed"  
system of  finite size. 

Another  o f  our  problems relates to the lack o f  steady state. I think this 
is not  problemat ic  in our  situation. We may assume for the stages just after 

Fig. 1. 

to 

H 

X' 

tf 

2cVt'o/b 
~ r  

The particle horizon H of observer O living at time to, and sections of two spacelike 
hypersurfaces X and X' entirely within H and intersecting it at time t r. 
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the singularity, when all processes proceed in thermodynamic equilibrium, 
that entropy is conserved. (Gravitons should soon fall out of equilibrium 
with the other contents of the universe; however, since they are massless, 
their entropy is preserved during the expansion.) This means that 

S~'.~, = 0 (4) 

where S ~" is the entropy current density. It is then clear that the entropy S 
contained in X, namely 

S(E) = j~ S ~ dX~ (5) 

(here dX~, is the three-dimensional hypersurface element erected on Z) is 
unaffected if X is defined in any way that does not displace its junction 
point with H, e.g., replacing X by Y.' in Figure 1. The fact that space is 
expanding thus loses much of its significance: insofar as the entropy is 
concerned, we can work with a hypersurface which samples the spacetime 
at various times t. 

Another problem in our list is the definition of the energy of the system. 
Energy is not a scalar, so we need definite observers to specify it. It seems 
inappropriate to try to deal with gravitational energy in part of a 
homogeneous space, so I will assume that energy in the bound is to be 
interpreted as thermal energy. Then the following definition of  energy E 
seems appropriate. If u ~ is the four-velocity field of  the radiation in question 
[in the coordinates used in (2), u ~'= (c -~, 0, 0, 0)], we first construct the 
Poynting vector - T ~ u  ~ out of the stress-energy tensor for the radiation 

T ~  = (p +p)u~u ~ +pg~,V (6) 

(the radiation energy density p and pressure p being related by p = p/3) 
and then write the energy as 

- T ,u  dX~ (7) 

Of course, E(X) is not invariant under deformations of X. As shown in the 
Appendix, as a consequence of  the assumed positiveness of p, E will 
decrease if X is deformed into the future. 

What about the problem posed by the curvature? With regard to spatial 
curvature, there is no problem. As is well known, in Friedmann models at 
early times space curvature is negligible in the sense that the spatial radius 
of  curvature is very large compared to the size of the horizon. It is this very 
fact which allows us to represent all three types of spaces (flat, closed, 
hyperbolic) by one metric, namely (2). Spacetime curvature is not covered 
by this excuse; I will just have to assume that the bound is still valid in its 
presence. 



Cosmological Singularity and Thermodynamics 977 

9. E N E R G Y  A N D  E N T R O P Y  

To calculate the entropy (5) and energy (7) on a section of an hypersur- 
face like E in Figure 1, recall that in the Friedmann models S = su ~, where 
s is the scalar entropy density. According to the Boltzmann formulas, the 
contribution of each species of massless boson quanta with two helicity 
states is 

p = as~T ~ and s = 4/3 asBT 3 (8) 

where T is the temperature and asB = 7r2/15h3c 3 is the Stefan-Boltzmann 
constant (each helicity state of  a massless fermion species contributes 7/16 
as much). Substituting (8) in Friedmann's equation 

a-2( da/ dt) 2= (8rrG/3 )pc -2 (9) 

we get 

T = c S / 4 h 3 / 4 ( G N ) - l / 4 t - l / 2  (10) 

where N is the effective number of particle species present in the early 
universe (because T is high, we regard all species as massless). In (10) and 
subsequently I have left out all factors like ~r, v~, etc., in the interest of 
transparency. By substituting (10) in (8), one may evaluate the integrals (5) 
and (7) once E is specified. 

As mentioned, S is invariant under deformations of Y~, while E 
decreases as E is deformed into the future. Hence the highest S / E  for 
surfaces E having a fixed intersection with H obtains for E approaching 
the particle horizon to the future of the intersection. I shall thus focus on 
a hypersurface which coincides with H to the future of its footpoint t = (~ 
(see Figure 1; mathematically it makes little difference that the limiting 
surface is null). What we shall be doing is computing S and E of all the 
radiation visible in a snapshot of the whole sky obtained by O at time to 
which records back to time t/. This procedure has much in common with 
the astronomer's interest in all objects visible in a given photographic plate. 
There, too, only objects on the light cone are seen, and there is a practical 
cutoff in depth which often coincides, for very "deep"  plates, with a redshift 
or footpoint cutoff. 

To evaluate the integrals on the limiting null surface (3), first note that 
since the vector integrands in (5) and (7) have only a time component,  the 
only relevant component of  d E ,  is 

dEt = c b 3 t 3 / 2  r 2 sin 0 dr dO d~ (11) 

in which we must express t in terms of r by means of  (3). Carrying out the 
integrals from r = 0  to r= r/---(2c/b)(x/~o-x/~ r) [according to (3), this is 
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the comoving radial coordinate corresponding to the footpoint tj-], we get 

S(W~) = c15/4( ~G) 3 /4Nl /4 (~o-~ f f  )3 (12) 

E ( Z ) = e S G  ~[1/2toln(to/tl)+2(totr)'/2-3/2 t 0 - 1 / 2  t/] (13) 

Not unexpectedly, the arbitrary scale factor b has dropped out from the 
final results. 

Consider now the dependence of S / E  on tr for fixed to. Numerically, 
one finds that the ratio grows monotonically from zero at t I = 0 to a finite 
constant at tr = to. Expanding the square bracket in (13) in the small quantity 
~ 0 0 - ~  about (r = to, we find analytically the peak value attained by S~ E: 

S /  E = ( G/  h 3 r 0 (14) 

This result may be interpreted as the largest S / E  observable to O. Although 
much the same value value would be obtained by just taking s /p  at fixed 
time to, in that case we would lack a clear observational justification for 
the procedure in terms of a single observer (it amounts to computing the 
total energy and entropy as reported by many observers all at the same time). 

10. CONCLUSIONS 

The bound on specific entropy requires that S / E  be no larger than 
2~rR/he, where R is the largest radius of the system in question. It seems 
most appropriate to interpret R as the metric radius RH at time to of the 
region between r=O and r = 2 c ~ o / b ,  since this is the region which has 
causally influenced the radiation whose entropy and energy we have com- 
puted. From the metric (2) we find that 

RH = 2Cto (15) 

Evidently for to large compared with the Planck-Wheeler time (Gh/cS) 1/2 
the entropy bound is amply satisfied. However, we can also see that /f we 
put our fidueial observer 0 too early, namely at t <x /N(  Gh/  cS) ~/2, then the 
entropy bound is contradicted. 

If we put trust in the entropy bound, then there are several ways out 
of the dilemma, all of  which amount to denying the existence of the 
cosmological singularity. First, one might argue that there was no particle 
horizon at all in the universe, thus eliminating the natural basis for applica- 
tion of the bound. For example, if the universe started off expanding in a 
precisely de Sitter model, as Starobinsky would have it, there is no particle 
horizon, and neither is there a cosmological singularity as such. Likewise, 
if the universe entered into expansion after having first contracted and then 
bounced, as in the VMT cosmological models, or in the Fulling-Parker or 
Anderson models, then there is no causal barrier, no horizon, and no 
singularity. 
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Alternatively, were the universe to materialize out of  nothing somewhat 
after the fashion of Vilenkin's model, we might have a situation where the 
region visible to an observer is limited in dimension, but is never smaller 
than some minimum size dictated by the radius of curvature of the emergent 
spacetime. Here, again, there would be no singularity, but there might be 
something like a particle horizon. Application of the bound on entropy to 
the appropriate  region might then tell us that its dimension cannot be smaller 
than the Planck-Wheeler  length (Gfih/c3) I/2, and indeed may be required 
to be large compared to it if N, the number  of species in the early universe, 
is itself large. 

Thus, whichever alternative is relevant, thermodynamics leads to a 
conclusion in harmony with expectations based on our vision of full-fledged 
quantum gravity: it makes no sense to think of spacetime with an arbitrarily 
high curvature event. The appearance of the Planck-Wheeler  quantities in 
determining the earliest time for an observer suggests that it is quantum 
gravity which is responsible for the prevention of singularity. However, as 
stressed earlier, thermodynamic conclusions are not dependent  on detailed 
mechanisms. We cannot be sure that the present universe was coaxed away 
from a singularity by quantum effects in the gravitation, rather than by one 
of the other mechanisms reviewed earlier. What we do get out of  thermody- 
namics is an assurance that the standard Friedmann models, so useful for 
describing the recent universe, cannot be extrapolated all the way back to 
their singular beginnings. This is found to be inconsistent with thermody- 
namics. 

APPENDIX 

Here we obtain the change of the energy E defined by (7) when the 
hypersurface E is deformed into E' (see Figure 1). In view of the divergence- 
less nature of  T ~ ,  we can write by means of Gauss '  theorem 

AE ~ E ( 2 ' ) - E ( 2 )  = - [  T '~u~; . ( -g )  1/2 d4x (A1) 
d v 

where V is the 4-volume enclosed between 2 and 2' .  The contribution from 
the surface at r = 0 in Figure 1 vanishes because of the factor r 2 in the 
3-volume element. From Raychadhury 's  theorem we have 

1 u,,;~ = -a , ,u .  + o'~. + w~.~ +~O(g~,. + u~u.) (A2) 

where a~ is the acceleration of the flow field u~, r is its the shear tensor, 
w ~  its rotation tensor, and 0--- u~;~ its expansion scalar. Because a~ and 
u~ are orthogonal and T ~ has the form (6), the a~ term of (17) does not 
contribute to the integrand of (16). Likewise, the rotation term drops out 
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by virtue o f  the symmetry of  T "~ and the antisymmetry of  wv.. The shear 
term also drops out because o-~. is purely spacelike and traceless. The 
remaining term gives 

AE = -  f Op(-g) 1/2 a4x (A3) 
d V 

from which it is clear that since 0 >  0 in a Friedmann model, and the 
pressure is assumed positive, then E on 2;' is smaller than on Z if Y' is 
completely to the future of ~. 

N O T E  A D D E D  IN P R O O F  

In a recent Sao Paolo preprint M. Schiffer has extended the argument 
given here to anisotrophic cosmological models. 
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